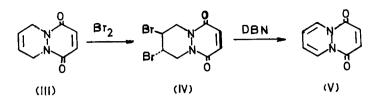
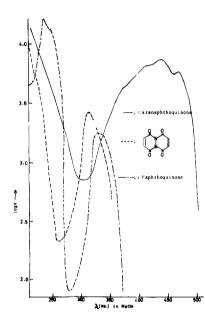
Tetrahedron Letters No. 19, pp 1885 - 1886, 1972. Pergamon Press. Printed in Great Britain.

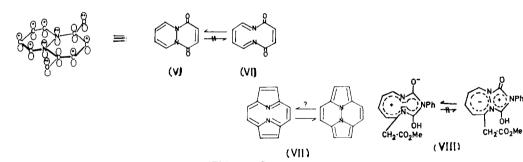
SYNTHESIS AND CHARACTERIZATION OF A NITROGEN-BRIDGED DIAZANAPHTHOQUINONE¹ Tadashi SASAKI, Ken KANEMATSU, and Shigeo OCHIAI Institute of Applied Organic Chemistry, Faculty of Engineering, Nagoya University, Nagoya, 464, Japan (Received in Japan 10 March 1972; received in UK for publication 30 March 1972)


Current interest in potentially aromatic ten π -electron cycles of 1,6bridged[10]annulenes (I)² and in particular, of the 2,5-quinone derivatives(II)³ promts us to report the synthesis of diazanaphthoquinone (V), a fused 6/6 ten π -electron aza-aromatic ring system with two bridged nitrogen atoms.



Bromination of butadiene-diazaquinone adduct (III)⁴ in CH_2Cl_2 at -78° gave the dibromo compound (IV) in 87% yield; mp 159-162°, $C_8H_8N_2O_2Br_2$, $\tau(CDCl_3)$ 3.2 (s, 2H), 5.6 (m, 6H), ν (KBr) 1643 cm⁻¹ (C=0). Treatment of compound (III) with DBN (1,5-diazabicyclo[4.3.0]non-5-ene) in refluxing benzene afforded orange needles (V) in 19% yield; mp 149-152°, $C_8H_6O_2N_2$, ν_{max} (KBr) 1624 cm⁻¹ (C=O). However, the reaction did not proceed with triethylamine or t-BuOK. The N.M.R. spectrum of the orange product shows two double doublet signals at τ 2.19 (2H) and 4.10 (2H) with coupling constants of 3.0 and 6.0 Hz, and a sharp singlet at τ 2.93 (2H), suggesting the presence of a diamagnetic ring current within the molecule. Furthermore, the U.V. spectrum [λ_{max} (MeOH) 214 nm (ϵ 13,100), 411 (6,500, shoulder), 437 (7,300), 467 (5,700)] indicates the presence of the π -conjugated ring system (see Figure 1).

* All new compounds gave satisfactory analytical results for the proposed structures.


1<u>990</u> 0.1

Since the N.M.R. spectrum shows no change when a solution in deuteriochloroform is cooled to -20 $^{\circ}$, the possibility that the structure (VI) might be in a rapid equilibrium with diaza-annulenone system is Thus, the compound might be more ruled out. properly represented by bicyclic diazanaphthoquinone(pyridazino[1.2-a]pyridazine-1,4-dione)(V) as an aromatic ten π -electron system rather than mono-In this connection, cyclic diazaannulenone (VI). however, two types of nitrogen-bridged annulene derivatives such as compounds VII⁵ and VIII⁶ have Studies in progress are aimed at been reported. finding answers to these questions in these ring systems.

Figure 1.

REFERENCES

- Part LXIII: Studies of Heteroaromaticity. For part LXII of this series, T. Sasaki, K. Kınematsu, and A. Kakehi, <u>J. Org. Chem.</u> in the press.
 E. Vogel, 'Aromaticity ', Special Publication No. 21, Chem. Soc., London,
- 2. E. Vogel, ' A 1967, p. 113.
- 3. E. Vogel, E. Lohmar, W. A. BUll, B. Söhngen, K. Mullen, and H. Gunther, Angew. Chem., 83, 401 (1971). 4. T. J. Kealy, J. Amer. Chem. Soc., 84, 966 (1962).
- W. W. Paudler and E.A. Stephan, J. Amer. Chem. Soc., 92, 4468 (1970).
 T. Sasaki, K. Kanematsu, and K. Hayakawa, J. Chem. Soc., (C) 2142 (1971).